9 research outputs found

    Binary Classifier Calibration using an Ensemble of Near Isotonic Regression Models

    Full text link
    Learning accurate probabilistic models from data is crucial in many practical tasks in data mining. In this paper we present a new non-parametric calibration method called \textit{ensemble of near isotonic regression} (ENIR). The method can be considered as an extension of BBQ, a recently proposed calibration method, as well as the commonly used calibration method based on isotonic regression. ENIR is designed to address the key limitation of isotonic regression which is the monotonicity assumption of the predictions. Similar to BBQ, the method post-processes the output of a binary classifier to obtain calibrated probabilities. Thus it can be combined with many existing classification models. We demonstrate the performance of ENIR on synthetic and real datasets for the commonly used binary classification models. Experimental results show that the method outperforms several common binary classifier calibration methods. In particular on the real data, ENIR commonly performs statistically significantly better than the other methods, and never worse. It is able to improve the calibration power of classifiers, while retaining their discrimination power. The method is also computationally tractable for large scale datasets, as it is O(NlogN)O(N \log N) time, where NN is the number of samples

    OBTAINING ACCURATE PROBABILITIES USING CLASSIFIER CALIBRATION

    Get PDF
    Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are often referred to as calibration methods in the machine learning literature. This thesis describes a suite of parametric and non-parametric methods for calibrating the output of classification and prediction models. In order to evaluate the calibration performance of a classifier, we introduce two new calibration measures that are intuitive statistics of the calibration curves. We present extensive experimental results on both simulated and real datasets to evaluate the performance of the proposed methods compared with commonly used calibration methods in the literature. In particular, in terms of binary classifier calibration, our experimental results show that the proposed methods are able to improve the calibration power of classifiers while retaining their discrimination performance. Our theoretical findings show that by using a simple non-parametric calibration method, it is possible to improve the calibration performance of a classifier without sacrificing discrimination capability. The methods are also computationally tractable for large-scale datasets as they run in O(N log N) time, where N is the number of samples. In this thesis we also introduce a novel framework to derive calibrated probabilities of causal relationships from observational data. The framework consists of three main components: (1) an approximate method for generating initial probability estimates of the edge types for each pair of variables, (2) the availability of a relatively small number of the causal relationships in the network for which the truth status is known, which we call a calibration training set, and (3) a calibration method for using the approximate probability estimates and the calibration training set to generate calibrated probabilities for the many remaining pairs of variables. Our experiments on a range of simulated data support that the proposed approach improves the calibration of edge predictions. The results also support that the approach often improves the precision and recall of those predictions

    Obtaining Well Calibrated Probabilities Using Bayesian Binning

    No full text
    Learning probabilistic predictive models that are well calibrated is critical for many prediction and decision-making tasks in artificial intelligence. In this paper we present a new non-parametric calibration method called Bayesian Binning into Quantiles (BBQ) which addresses key limitations of existing calibration methods. The method post processes the output of a binary classification algorithm; thus, it can be readily combined with many existing classification algorithms. The method is computationally tractable, and empirically accurate, as evidenced by the set of experiments reported here on both real and simulated datasets

    PhenoLines: Phenotype Comparison Visualizations for Disease Subtyping via Topic Models

    No full text
    International audience—PhenoLines is a visual analysis tool for the interpretation of disease subtypes, derived from the application of topic models to clinical data. Topic models enable one to mine cross-sectional patient comorbidity data (e.g., electronic health records) and construct disease subtypes—each with its own temporally evolving prevalence and co-occurrence of phenotypes—without requiring aligned longitudinal phenotype data for all patients. However, the dimensionality of topic models makes interpretation challenging, and de facto analyses provide little intuition regarding phenotype relevance or phenotype interrelationships. PhenoLines enables one to compare phenotype prevalence within and across disease subtype topics, thus supporting subtype characterization, a task that involvesidentifying a proposed subtype’s dominant phenotypes, ages of effect, and clinical validity. We contribute a data transformation workflow that employs the Human Phenotype Ontology to hierarchically organize phenotypes and aggregate the evolving probabilities produced by topic models. We introduce a novel measure of phenotype relevance that can be used to simplify the resulting topology. The design of PhenoLines was motivated by formative interviews with machine learning and clinical experts. We describe the co-operative design process, distill high-level tasks, and report on initial evaluations with machine learning experts and a medical domain expert. These results suggest that PhenoLines demonstrates promising approaches to support the characterization and optimization of topic models

    PhenoLines: Phenotype Comparison Visualizations for Disease Subtyping via Topic Models

    No full text
    International audience—PhenoLines is a visual analysis tool for the interpretation of disease subtypes, derived from the application of topic models to clinical data. Topic models enable one to mine cross-sectional patient comorbidity data (e.g., electronic health records) and construct disease subtypes—each with its own temporally evolving prevalence and co-occurrence of phenotypes—without requiring aligned longitudinal phenotype data for all patients. However, the dimensionality of topic models makes interpretation challenging, and de facto analyses provide little intuition regarding phenotype relevance or phenotype interrelationships. PhenoLines enables one to compare phenotype prevalence within and across disease subtype topics, thus supporting subtype characterization, a task that involvesidentifying a proposed subtype’s dominant phenotypes, ages of effect, and clinical validity. We contribute a data transformation workflow that employs the Human Phenotype Ontology to hierarchically organize phenotypes and aggregate the evolving probabilities produced by topic models. We introduce a novel measure of phenotype relevance that can be used to simplify the resulting topology. The design of PhenoLines was motivated by formative interviews with machine learning and clinical experts. We describe the co-operative design process, distill high-level tasks, and report on initial evaluations with machine learning experts and a medical domain expert. These results suggest that PhenoLines demonstrates promising approaches to support the characterization and optimization of topic models
    corecore